字:
关灯 护眼
首页 > 历史 > 文曲在古 >第129章 京城讲学

第129章 京城讲学

作者:戴建文字数:1791更新:2024-09-18 07:57

一秒记住【宝书网】 lzbao.net,更新快,无弹窗!

第129章京城讲学

戴浩文回到京城后,稍作休整便开始了他的讲学之路。消息一经传出,众多学子纷纷慕名而来,渴望能从他那里获取更多的知识。

在一间宽敞的学堂内,座无虚席,学子们济济一堂,目光中充满了期待。戴浩文站在讲台上,目光炯炯,环视着众人,然后缓缓开口道:

“今日,吾要与诸位探讨的是等比式的性质及其应用。”

他拿起一支毛笔,蘸了蘸墨,在一块大木板上写下了一个等比式:a∶b=c∶d。

“首先,我们来了解等比式的基本性质。”戴浩文指着木板说道,“在这个等比式中,若ad=bc,那么这就是等比式的一个重要性质。例如,若有2∶3=4∶6,那么2×6=3×4。”

学子们纷纷点头,认真地记录着。

戴浩文接着说:“等比式还有一个性质,若a∶b=c∶d,那么(a+b)∶b=(c+d)∶d。”他举例解释道,“就如3∶2=6∶4,那么(3+2)∶2=(6+4)∶4。”

看到学子们若有所思的样子,戴浩文微笑着问道:“谁能来举例说明一下这个性质呢?”

一位年轻学子站起来说道:“先生,若5∶3=10∶6,那么(5+3)∶3=(10+6)∶6,即8∶3=16∶6,是这样吗,先生?”

戴浩文满意地点点头:“甚是!理解得非常快。那还有其他性质,比如,若a∶b=c∶d=e∶f,那么(a+c+e)∶(b+d+f)=a∶b。”

为了让学子们更好地理解,他又举例道:“若2∶3=4∶6=6∶9,那么(2+4+6)∶(3+6+9)=2∶3。”

学子们纷纷发出惊叹声,他们开始感受到等比式的奇妙之处。

戴浩文继续深入讲解:“等比式在实际生活中也有诸多应用。比如在商业交易中,若知道不同物品之间的价格比例关系,便可根据其中一种物品的价格,推算出其他物品的价格。”

他讲述了一个例子:“假设一斤米的价格与三斤肉的价格之比为1∶3,而米的价格为每斤10文钱,那么肉的价格就可通过等比式计算得出。”

学子们纷纷动笔计算,很快算出肉的价格为每斤30文钱。

戴浩文接着说:“再比如在地图绘制中,地图上的距离与实际距离之间也存在等比关系。通过测量地图上的距离,再根据比例尺,就可以计算出实际的距离。”

一位学子提问道:“先生,那在建筑设计中是否也能用到等比式呢?”

戴浩文微笑着回答:“当然可以!在设计建筑物的某些部分时,为了保持比例的协调和美观,常常会运用等比式的原理。例如,门窗的高度与宽度之间可能存在一定的等比关系。”

他又提到了在天文观测中的应用:“观测星星之间的距离或者计算天体的运动轨迹时,等比式也能发挥作用。”

学子们听得津津有味,思维也越发活跃起来。

“那等比例又有哪些性质和应用呢?”另一位学子问道。

戴浩文说道:“等比例与等比式有相似之处。若有三个数a、b、c成等比例,即a∶b=b∶c,那么b就称为a和c的比例中项。”

他举例解释:“如2、4、8成等比例,4就是2和8的比例中项,因为2∶4=4∶8。”

戴浩文接着说:“等比例也有一些性质,比如在a∶b=b∶c中,b2=ac。”

学子们纷纷点头表示理解。

“在实际应用中,等比例同样具有重要意义。”戴浩文说道,“例如在音乐中,一些和谐的音符比例关系可以产生美妙的旋律。”

他详细解释道:“比如一段旋律中,某个音符的时长与另一个音符的时长成等比例关系,可能会使整个旋律更加动听、和谐。”

学子们沉浸在知识的海洋中,时间不知不觉地流逝。

戴浩文最后总结道:“等比式和等比例的性质及应用广泛而多样,需要我们在实际生活和学习中不断去发现和运用。希望诸位能够深入思考,举一反三,将所学知识运用得更加娴熟。”

讲学结束后,学子们纷纷围上前,向戴浩文请教更多的问题。戴浩文耐心地一一解答,鼓励他们要勇于探索和实践。

此后,戴浩文的讲学名声越来越响亮,吸引了更多的学子前来聆听。而他也继续不断地传授着各种知识,培养出了一批又一批有才华、有见识的学子,为古代学术的发展做出了重要贡献。

在京城的日子里,戴浩文还时常与其他学者交流探讨,共同推动学术的进步。他的学说和思想在学界产生了深远的影响,成为了当时学术领域的一颗璀璨明星。

而那些曾经在乡村接受过他教导的李明、陈华、赵婷、孙宇和吴悠等人,也在各自的领域中努力运用所学知识,为社会做出贡献的同时,也期待着有朝一日能再次与戴浩文先生相聚,分享他们的成长和进步……


  
『加入书签,方便阅读』

Copyright © 2019-2022